
Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

5
www.amity.edu/ajcs

Study on Function Ambiguity in Inheritance

Using Object Oriented Programming with C++,

Java and C#
Manoj R Chakravathi

Shilpa Medicare Limited, Raichur, India

manoj16mar93@gmail.com

Abstract:

C++ Java and C# is object oriented programming

language [1] [2]. It supports features of object-oriented

programming systems. Main features are Polymorphism,

Encapsulation and Inheritance. Polymorphism is the

attribute that allow one interface to control access to a

general class of action. Encapsulation is a mechanism that

binds both code and data together in a single unit like

class such that to keep both safe from outside interfaces

and misuse of code. Inheritance is a mechanism of

creating new class by using old class. Old class are also

called as Base Class, Super Class and Parent Class and

New Class is also called as Derived Class, Subclass and

Child Class. Inheritance allow the programmer to reuse

the code. Once the programmer is prepared with his Class

and tested, it can be used by other library programmers.

While programming in this fashion problems like function

ambiguity may arise, which are difficulty to identify and

debug. This paper shows how to overcome with function

ambiguity in inheritance in C++ [3] [4] [5], Java and C#

[6].

Keywords: Class, Inheritance, Function Overriding,

Function Overloading, Virtual Function, Virtual Base

Class, Scope Resolution Operator

1. Introduction

During inheritance the major problem is function

ambiguity it happens when multiple base classes are

inherited in derived class, we have 5 different types of

Inheritance. Namely Single Inheritance, Multiple

Inheritance, Hierarchical Inheritance, Multilevel

Inheritance, Hybrid Inheritance (also known as Virtual

Inheritance). Function ambiguity will arise only when a

more than one base class are inherited in derived class. In

multiple Inheritance, there is a possibility that a class may

inherit member functions with the same function name

from two or more base classes and the derived class may

not have same functions with same name as those of its in

Base Classes. If the object of the derived class needs to

access one of the member function with same one named

of the base classes, then it results in ambiguity as it is not

clear to the compiler to which bases class member

function should be refer. The ambiguity simply means the

state when the compiler is confused. The solution to this

ambiguity can be done using two methods in C++ [7] [8]

first is using Scope Resolution Operator second is by

using Virtual Vase Function in C++. And in Java, C#

solved by Interfaces Method.

2. Solution to function ambiguity in inheritance in C++

Consider a Base Class x with member function named

display() and derived1 class and derived2 class are

inherited from base class x and this two classes has a

function with same function name, same arguments and

with same return type as in the base class x. Another class

y is derived from the class derived1 and class derived2. If

suppose display () function is called with the help of class

y object objectofy. display () then complier with pop up

an error because when you inherit a classes base class

members are copied in derived class, means here in our

example display () is copied in two derived

classes(derived1 and derived2)moreover explicitly we

have mentioned display () function in derived1 and

derived2 classes.

At the moment when object of class y access the member

function display () as it is copied in two derived

classes(derived1 and deried2)plus we have included

explicitly since we have two display () in each derived

class(that is derived1, derived2) since complier can’t

understand to which of the display () function should it

invoke so it displays an error. When a function with same

name, arguments, return types are present in same blocks

they are called as function overloading and if they are

present in two different blocks (like class) then they are

called as Function Overridden. Fig .1 shows an

Ambiguous Call Diagram and Fig.2 show an Ambiguous

Call Program with respective to inheritance.

Fig. 1. Ambiguous Call Diagram

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

6
www.amity.edu/ajcs

Fig.2 Ambiguous Call Program Example in C++.

A. Using Scope Resolution Operator

The scope resolution operator(::) is a special operator in

C++, is used in two different situation first is used to fetch

global variables secondly is used to identify which

member function belongs to which class.Fig.2 shows a

ambiguous call program where a complier will Issus a

error message when we try to compile it, this program can

be made successfully run by using scope resolution

operator, during invoking display() in main() use scope

resolution operator like object name. class name::function

name class name can be any class either dervied1,

derived2 or class x which ever display() of class u wishes

to invoke use that class name example if you wishes to

use display() of derived2 than use like

object.derived2::display() to invoke display() version of

derived2.

Fig. 3.

B. Virtual Base Class

Will consider another example to exam working of virtual

base class which helps to overcome ambiguous function

in inheritance in C++. Virtual is keyword in C++ and has

two different version mainly is virtual function and

another is virtual base class. Using Virtual Function, we

can invoke different overridden function using same

statements.

When we use virtual keyword attached to the first

statements of class declaration than only one copy of base

class members are copied in derived classes.

Hence virtual keyword is used to avoid duplicates copies.

When two or more objects are derived from a common

base class, we can use virtual keyword (virtual base class)

to prevent multiple copies of the base class being present

in an object of derived class by declaring parent class/

base class as virtual when it is used during inheritance.

Such kind of parent/base class is commonly called as

Virtual Base Class.

Fig. 4.

The above program show in Fig.4 will pop up an error

because of i variable it has been copies in derived1 and

derived2 classes during compilation when invoking ob.

complier will get into the confusion of which i it should

invoke whether of class y/ class derived1/class derived2

so complier will Pop up you an error.

The use of virtual base class is shown above in Fig 5, the

program which is shown in Fig 5will give you an output

without any error because of virtual keyword mentioned

in declaration of class, Keyword virtual will make sure

you that only one copy of base class contains will be

copied in derived class during inheritance.

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

7
www.amity.edu/ajcs

Fig. 5.

3. Solution to Function Ambiguity in Inheritance in

Java and C#

When speaking about java -a pure object-oriented

programming [9] [10][11] [13] language, provides a lot

solution to the drawback of C++ languages (example

pointers, memory management) But the C# language

provides pointers to programmers. The reasons for

omitting multiple inheritance directly from the Java and

C# language is mostly for doing Java and C# as the

simple and easy object-oriented language. As a simple

language, Java's creators wanted a language that most

developers could grasp without extensive training.

So together, they worked to make the language as similar

to C++ as possible (familiar) without carrying over C++

[12] unnecessary complexity (simple). In the point of

designers' opinion, multiple inheritance causes more

problems in C++ as we discussed in paper and confusion

with solution. Classes are just permitted just to acquire

from the single base class which is called single

inheritance both in Java and C#.

So, they removed multiple inheritance with direct

implementation from the language so make Java [13] [14]

and C# [15] simple, Easy and Understandable to

everyone. Java developer introduced language construct

called interfaces to implement multiple inheritance.

Which c# developers also followed same interfaces

concept to implement multiple inheritance.

Java interface issimilar to class except interfaces will

contain only static variable, method without

body(definition) and objects cannot be created by using

interface.A class implements any number of interface but

one interfaces can extends another interface. There are

different types interface inheritance that is Single,

Multiple, Multilevel, Hybrid.Interface keyword isused to

create interface and keyword implements is used to

implement interface to class.

Interface Summary

• Interface functions or methods should be public and

abstract.

• Interface Fields or Variables Should Be in Either

Public or Final.

• Use Keyword Interface to Create an Interface

• Class Which Implementing an Interface Should

Always Use Keyword Implements.

• Objects cannot be created from Interface.

• Interfaces Basically Don't Have Constructors.

• An Interface Can Extends One or More Than One

Interfaces.

Fig. 6. Java syntax of interface example

Fig. 7. shows java implementations interface to class

Fig. 8. c# example of interface syntax

Fig. 9. c# implementation interface to class

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

8
www.amity.edu/ajcs

Fig. 10. example of multiple inheritance in java

Fig. 11. example of multiple inheritance program in c#

The difference between implementation language

construct in these two languages is Java uses implement

keyword to implement interface but in C# is uses: to

implement interface to class.

4. Conclusion

This paper shows the concept of function ambiguity in

inheritance with three different object-oriented

programming language C+, Java and C# and also shows

how to overcome by Diamond Inheritance Problem with

code. In C++ by using Scope Resolution Operator (: :)

and Virtual Base Class and in Java and C# by using

Interfaces Concept.

REFERENCES

[1] A Study on Inheritance Using Object Oriented

Programming with C++. Volume 1, Issue 2, July

2013 International Journal of Advance Research in

Computer Science and Management Studies.

[2] C++ Report and Journal of Object-Oriented

Programming (partial) archive

http://www.adtmag.com/joop/index.asp.

[3] Todd Veldhuizen: Techniques for Scientific C++

http://www.extreme.indiana.edu/~tveldhui/papers/techniq

ues/techniques.html

[4] Quinn Tyler Jackson's papers

http://qtj.n3.net/~quinn/

[5] The new C++ casting operators

http://www.acm.org/crossroads/xrds3-1/ovp3-1.html

[6] Interviews with Nathan Myers and Stan

Lippmann of state of C++

http://www.technetcast.com/tnc_cpp0.html

[7] Paul Pedriana: High Performance Game

Programming in C++

http://www.ccnet.com/~paulp/index.html

[8] DENDROCLIM2002: AC++ program for statistical

calibration of climate signals in tree-ring

chronologies$ Franco Biondia,*, KishorWaikulb a

Department of Geography, University of Nevada,

Mail Stop 154, Reno, NV 89557-0048, USA

bDepartment of Computer Science, University of

Nevada, Reno, NV 89557, USA Received 11 March

2003; received in revised form 4 November 2003;

accepted 4 November 2003

[9] Java, Java, Java-C.L. Sabharwal , Dept. of Computer

Sci., Missouri Univ., Rolla, MO, USA IEEE

Potentials (Volume: 17 , Issue: 3 , Aug/Sep 1998)

[10] Parallelism in object-oriented languages: a survey

-B.B. WyattComput. Sci. & Eng., Texas Univ.,

Arlington, TX, USA

K. KaviComput. Sci. & Eng., Texas Univ., Arlington,

TX, USA

S. HufnagelComput. Sci. & Eng., Texas Univ.,

Arlington, TX, USA- IEEE Software (Volume:

9 , Issue: 6 , Nov. 1992)

[11] Implementing concurrent object-oriented languages

on multicomputers - A. Yonezawa ; S. Matsuoka ; M.

Yasugi ; K. Taura IEEE Parallel & Distributed

Technology: Systems & Applications (Volume:

1 , Issue: 2 , May 1993)

[12] Avoiding Insecure C++ —How to Avoid

Common C++ Security Vulnerabilities Aaron

Ballman; David Svoboda 2016 IEEE Cybersecurity

Development (SecDev)Year: 2016Page s: 65 –

 65IEEE Conferences

[13] Introducing embedded systems in the first C/C++

programming class James O. Hamblen; Zachery C.

Smith; Winne W. Woo 2013 IEEE International

Conference on Microelectronic Systems Education

http://www.adtmag.com/joop/index.asp
http://www.extreme.indiana.edu/~tveldhui/papers/techniques/techniques.html
http://www.extreme.indiana.edu/~tveldhui/papers/techniques/techniques.html
http://qtj.n3.net/~quinn/
http://www.acm.org/crossroads/xrds3-1/ovp3-1.html
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22C.L.%22&searchWithin=%22Last%20Name%22:%22Sabharwal%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=45
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=45
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=15498
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22B.B.%22&searchWithin=%22Last%20Name%22:%22Wyatt%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22K.%22&searchWithin=%22Last%20Name%22:%22Kavi%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22S.%22&searchWithin=%22Last%20Name%22:%22Hufnagel%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4393
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22A.%22&searchWithin=%22Last%20Name%22:%22Yonezawa%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22S.%22&searchWithin=%22Last%20Name%22:%22Matsuoka%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22M.%22&searchWithin=%22Last%20Name%22:%22Yasugi%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22M.%22&searchWithin=%22Last%20Name%22:%22Yasugi%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22K.%22&searchWithin=%22Last%20Name%22:%22Taura%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=88
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=88
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5729
https://ieeexplore.ieee.org/document/7839791/
https://ieeexplore.ieee.org/document/7839791/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7838558
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7838558
https://ieeexplore.ieee.org/document/6566689/
https://ieeexplore.ieee.org/document/6566689/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6560461
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6560461

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

9
www.amity.edu/ajcs

(MSE)Year: 2013Page s: 1 – 4Cited by: Papers

(3)IEEE Conferences

[14] c# Blueprint Action Pattern Peng Gao; Jianbin Liu

2013 International Conference on Information

Science and Cloud Computing Companion Year:

2013Page s: 376 – 381

[15] Portable C/C++ code for portable XML data

Zhaoqing Wang; H.H. Cheng IEEE Software Year:

2006 , Volume: 23 , Issue: 1

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6560461
https://ieeexplore.ieee.org/document/6566689/citations?tabFilter=papers#citations
https://ieeexplore.ieee.org/document/6566689/citations?tabFilter=papers#citations
https://ieeexplore.ieee.org/document/6973621/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6968712
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6968712
https://ieeexplore.ieee.org/document/1576661/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33326

